
An FPRAS for Model Counting for
Non-Deterministic Read-Once Branching Programs
Kuldeep S. Meel r⃝ # �

University of Toronto, Toronto, Canada

Alexis de Colnet r⃝ #�

TU Wien, Vienna, Austria

Abstract
Non-deterministic read-once branching programs, also known as non-deterministic free binary decision
diagrams (nFBDD), are a fundamental data structure in computer science for representing Boolean
functions. In this paper, we focus on #nFBDD, the problem of model counting for non-deterministic
read-once branching programs. The #nFBDD problem is #P-hard, and it is known that there exists
a quasi-polynomial randomized approximation scheme for #nFBDD. In this paper, we provide the
first FPRAS for #nFBDD. Our result relies on the introduction of new analysis techniques that
focus on bounding the dependence of samples.

2012 ACM Subject Classification Theory of computation Approximation algorithms analysis

Keywords and phrases Approximate model counting, FPRAS, Knowledge compilation, nFBDD

Funding Meel acknowledges the support of the Natural Sciences and Engineering Research Council
of Canada (NSERC), [funding reference number RGPIN-2024-05956; de Colnet is supported by the
Austrian Science Fund (FWF), ESPRIT project FWF ESP 235. This work was done in part while
de Colnet was visiting the University of Toronto.1

Acknowledgements This research was initiated at Dagstuhl Seminar 24171 on “Automated Synthesis:
Functional, Reactive and Beyond” (https://www.dagstuhl.de/24171). We gratefully acknowledge
the Schloss Dagstuhl - Leibniz Center for Informatics for providing an excellent environment and
support for scientific collaboration.

1 Introduction

Read-once branching programs or binary decision diagrams are fundamental data structures
in computer science used to represent Boolean functions. Their variants have been discovered
multiple times across various sub-fields of computer science, and consequently, they are
referred to by many acronyms [15, 9, 23]. In this paper, we focus on non-deterministic
read-once branching programs, also known as non-deterministic free binary decision diagrams
(nFBDD).

We study the following computational problem:
#nFBDD: Given a non-deterministic read-once branching program B over a Boolean set of
variables X, compute the number of models of B, i.e., the number of assignments over X

that B maps to 1.
From a database perspective, #nFBDD is an important problem owing to the recent

connections between query evaluation and knowledge compilation [13, 14, 21, 20, 2, 1]. The
field of knowledge compilation has its origins in the artificial intelligence community, where
functions represented in input languages are compiled into target languages that can support

1 The authors decided to forgo the old convention of alphabetical ordering of authors in favor of a
randomized ordering, denoted by r⃝. The publicly verifiable record of the randomization is available at
https://www.aeaweb.org/journals/policies/random-author-order/search

mailto:meel@cs.toronto.edu
https://orcid.org/0000-0001-9423-5270
mailto:decolnet@ac.tuwien.ac.at
https://orcid.org/0000-0002-7517-6735
https://www.dagstuhl.de/24171
https://www.aeaweb.org/journals/policies/random-author-order/search

2 An FPRAS for #nFBDD

queries tractably (often viewed as polynomial time) [10]. The typical queries of interest are
satisfiability, entailment, enumeration, and counting.

The target languages in the context of databases have been variants of binary decision
diagrams, also referred to as branching programs, and circuits in decomposable negation
normal form (DNNF) [2, 1]. A binary decision diagram is a representation of a Boolean
function as a directed acyclic graph where the nodes correspond to variables and the sinks
correspond to values, i.e., 0 or 1. One of the most well-studied forms is the ordered binary
decision diagram (OBDD), where the nodes correspond to variables and, along every path
from root to leaf, the variables appear in the same order [9]. A generalization of OBDD is
nOBDD, where internal nodes can also represent disjunction (∨) gates.

nFBDD are a natural generalization of nOBDDs, as they do not impose restrictions on the
ordering of Boolean variables. Since nFBDD do not impose such restrictions, they are known
to be exponentially more succinct than nOBDD; that is, there exist functions for which the
smallest nOBDD is exponentially larger than the smallest nFBDD [4]. From this viewpoint,
nFBDDs occupy a space between nOBDD and DNNF circuits, as they are exponentially
more succinct than nOBDDs, while DNNFs are quasi-polynomially more succinct than
nFBDD [8, 4].

In the context of databases, the connection between knowledge compilation and query
evaluation has been fruitful, leading to the discovery of both tractable algorithms and lower
bounds. Of particular note is the application of the knowledge compilation paradigm in query
evaluation on probabilistic databases [14], Shapley value computation [11], the enumeration
of query answers, probabilistic graph homomorphism [5], counting answers to queries [7].
The knowledge compilation-based approach involves first representing the database task as
a query over a Boolean function and then demonstrating that the corresponding Boolean
function has a tractable representation in a given target language, which also supports
the corresponding query in polynomial time [3]. For example, in the context of query
evaluation over probabilistic databases, one can show that the problem of probabilistic query
evaluation can be represented as a weighted model counting problem over nOBDD when
the underlying query is a path query [5]. Since there is a fully polynomial-time randomized
approximation scheme (FPRAS) for the problem of model counting over nOBDD [6], it
follows that probabilistic query evaluation for regular path queries over tuple-independent
databases admits an FPRAS [5]. In the context of aggregation tasks, the underlying query is
often model counting and its variants [19].

The aforementioned strategy makes it desirable to have target languages that are as
expressive as possible while still supporting queries such as counting in polynomial time. In
this context, the recent flurry of results has been enabled by the breakthrough of Arenas,
Croquevielle, Jayaram, and Riveros, who showed that the problem of #nOBDD admits an
FPRAS [6]. As mentioned earlier, nOBDD imposes a severe restriction on variable ordering,
i.e., along every path from root to leaf, the variable ordering remains the same. nFBDD
generalizes nOBDD by alleviating this restriction, thereby enabling succinct representations
for several functions that require exponentially large nOBDD. Since nFBDD generalize
nOBDD, the #P-hardness of #nFBDD, the problem of model counting over nFBDD,
immediately follows. Accordingly, in light of the recent discovery of FPRAS for #nOBDD,
an important open question is whether there exists an FPRAS for #nFBDD. The best known
prior result provides a quasi-polynomial time algorithm owing to reduction of nFBDD to
DNNF (and accordingly (+,×)-programs) [12]. As noted in Section 2.1, the techniques
developed in the context of design of FPRAS for #nOBDD do not extend to handle the case
for #nFBDD and therefore, design of FPRAS for #nFBDD would require development of

K. S. Meel and A. de Colnet 3

new techniques.
The primary contribution of our work is to answer the aforementioned question affirmat-

ively, which is formalized in the following theorem.

▶ Theorem 1. Let B be an nFBDD over n variables, ε > 0 and δ > 0. Algorithm
approxMCnFBDD(B, ε, δ) runs in time O(n5ε−4 log(δ−1)|B|6 log |B|) and returns est with the
guarantee that Pr

[
est ∈ (1± ε)|B−1(1)|

]
≥ 1− δ.

Organization of the paper. We start with background on nFBDD in Section 2. The
different components of the FPRAS are described in Section 4 and the analysis is split in
three parts: in Section 5 we introduce the key concept of derivation paths, in Section 6 we
describe the particular framework for the analysis, and in Section 7 we go through the proof
of the FPRAS guarantees. For space reason, the proofs of several intermediate results are
deferred to the appendix.

2 Background

Given a positive integer n and m an integer less than n, [n] denotes the set {1, 2, . . . , n}
and [m, n] the set {m, m + 1, . . . , n}. For a, b and ε three real numbers with ε > 0, we use
a ∈ (1± ε)b to denote (1− ε)b ≤ a ≤ (1 + ε)b, similarly, a ∈ b

1±ε stands for b
1+ε ≤ a ≤ b

1−ε .
We sometimes uses the special value ∞ and in particular that 1

∞ equals 0.
Boolean variables take value 0 (false) or 1 (true). An assignment α to a set X of Boolean

variables is mapping from X to {0, 1}. We sometimes see α as a set {x 7→ α(x) | x ∈ X}.
We denote by α∅ the empty assignment, which corresponds to the empty set. The set of
assignments to X is denoted {0, 1}X . A Boolean function f over X is a mapping {0, 1}X to
{0, 1}. The models of f are the assignments mapped to 1 by f . When not explicit, the set
of variables assigned by α is denoted by var(α). When var(α′) ∩ var(α) = ∅, we denote by
α ∪ α′ the assignment to var(α′) ∪ var(α) consistent with both α and α′. For S and S′ two
sets of assignments, we write S ⊗ S′ = {α ∪ α′ | α ∈ S, α′ ∈ S′}.

nBDD. A binary decision diagram (BDD) is a directed acyclic graph (DAG) with a single
source node qsource, two sinks labeled 0 and 1, and where each internal node is labeled by a
Boolean variable x and has two outgoing edges: the 0-edge going to the 0-child q0 and and the
1-edge going to the 1-child q1 (potentially q0 = q1). Internal nodes are called decision nodes
and are written ite(x, q1, q0) (if x = 1 then go to q1 else go to q0). A path in the DAG contains
a variable x if it contains a node ite(x, q1, q0). Every variables assignment α corresponds to
the unique path that starts from the source and, on a decision node ite(x, q1, q0) follows the
α(x)-edge. Non-deterministic BDD (nBDD) also admit guess nodes: unlabeled nodes with
arbitrarily many children. When a path for an assignment reaches a guess node it can pursue
to any child, so several paths can correspond to the same assignment in an nBDD. For q a
node in an nBDD B, var(q) denotes the set of variables labeling decision nodes reachable
from q (including q) in the usual sense of graph reachibility. We note var(B) = var(qsource).
B computes a Boolean function over var(B) whose models are the assignments for which
at least one path reaches the 1-sink. Every node q of B is itself the source of an nBDD
and therefore represents a function over var(q) whose set of models we note mod(q). So
B−1(1) = mod(qsource). The function computed by an nBDD is also that computed by the
circuit obtained replacing every decision node ite(x, q1, q0) by (¬x ∧ q0) ∨ (x ∧ q1) and every
guess node with children q1, . . . , qk by q1 ∨ · · · ∨ qk. Thus, we call ∨-nodes the guess nodes
in this paper. The size of an nBDD B, denoted by |B|, is its number of edges.

4 An FPRAS for #nFBDD

nFBDD. An nBDD is free (nFBDD) when every path contains every variable at most
once. There are also called in the literature read-once non-deterministic branching programs
(1-NBP). Note that in an nFBDD, variables may appear in different order depending on the
path. When the order of occurrence of the variables is consistent among all paths of the
nFBDD we say that we have an ordered nBDD (nOBDD). We call an nFBDD 1-complete
when along every path from the source to the 1-sink, every variable occurs exactly once. We
call an nFBDD 0-reduced when it contains no decision nodes ite(x, 0-sink, 0-sink) and no
∨-nodes that have the 0-sink among their children. Technically, 0-reduced nFBDD cannot
represent functions with no models, but these functions are not considered in this paper. An
nFBDD is alternating when its source node is a ∨-node, when every ∨-node only has decision
nodes for children, and when every decision node has only ∨-nodes and sinks for children.

▶ Lemma 2. Every nFBDD B over n variables can be made 1-complete, 0-reduced, and
alternating in time O(n|B|2).

Proof sketch. First, we make B 0-reduced by repeating the following until reaching a fixed
point: replace all nodes ite(x, 0-sink, 0-sink) by the 0-sink, remove the 0-sink from ∨-nodes’
children, and replace all ∨-nodes with no child by the 0-sink. Doing these replacements
bottom-up in B takes time O(|B|) and results in a 0-reduced nFBDD B′ with |B′| ≤ |B|.

Second, we make B′ alternating w.r.t. the ∨-nodes. Replace every ∨-node that have the
1-sink as a child by the 1-sink. At that point, no sink is a child of any ∨-node. Next, for
every ∨-node q in B′, if q has a parent q′ that is a ∨-node, then remove q from q’s children
and add all of q’s children to q′’s children. Doing this replacement bottom-up yields an
nFBDD whose ∨-nodes all have only decision nodes children. The number of children of
each ∨-node is increased by at most |B′| so the running time is O(|B′|2) = O(|B|2). Let B′′

be the resulting nFBDD. B′′ is still 0-reduced.
Third, we make B′ 1-complete. For every q ∈ B′′, let children(q) = (q1, . . . , qk). While

there exists i ∈ [k] such that var(qi) ̸= var(q), choose x ∈ var(q) \ var(qi) and replace qi by
the node ite(x, qi, qi) in the children of q. This adds at most n decision nodes per original
child of q. So doing this for all decision nodes takes time O(n|B′′|) = O(n|B|2) and gives a
1-complete nFBDD B′′′ which is still 0-reduced and alternating w.r.t. the ∨ nodes.

Finally, to make B′′′ alternating, we just have to consider every ite(x, q1, q0) and, if qb is
not a ∨-node or a sink, to replace it by a ∨-node whose unique child is qb. This takes time
O(B′′′). One ∨-node is added for the source of the nFBDD if needed. ◀

The nodes of 1-complete 0-reduced alternating nFBDD are organized in layers L0, L1, . . . ,

L2n. L0 contains the sinks and, for 1 ≤ i ≤ 2n the layer Li contains all nodes whose children
(except the 0-sink) are in Li−1. We write L≤i = L0 ∪ · · · ∪Li, and similarly for L≥i, L<i and
L>i. Note that for all 1 ≤ i ≤ n, L2i−1 contains only decision nodes whereas L2i contains
only ∨-nodes. Importantly, we assume an arbitrary ordering on the children of the nodes; for
every node q we have a sequence (not a set) children(q) of its children.

FPRAS. For a counting problem that, given an input x of size |x|, aims at computing some
integer value N(x), a fully polynomial-time randomized approximation scheme (FPRAS)
is an algorithm that, given x, ε > 0, and 0 < δ < 1, runs in time polynomial in |x|, 1/ε,
and log(1/δ), and returns Ñ with the guarantee that Pr

[
Ñ ∈ (1± ε)N(x)

]
≥ 1− δ. In this

paper we give an #FPRAS for the problem #nFBDD.

K. S. Meel and A. de Colnet 5

#nFBDD
Input: an nFBDD B

Output: its number of models |B−1(1)|

2.1 Related Work
As noted in Section 1, the literature on binary decision diagrams is extensive; therefore,
we will focus solely on related results in the context of the model counting problem. The
problem of #nFBDD is #P-complete: membership in #P is immediate as every assignment
can be evaluated in PTIME, and the #P-hardness follows from the observation that the
problem of #DNF, i.e., counting the number of satisfying assignments of Boolean formulas
in Disjunctive Normal Form, is #P-hard [22]. Moreover, every DNF can be represented as
an nFBDD such that the size of the resulting nFBDD is polynomial in the size of the DNF.
Furthermore, it is also known that the problem of #nOBDD is SpanL-complete [6].

Given the #P-hardness, a natural direction of research is to understand the complexity
of approximation. The discovery of polynomial-time randomized approximation schemes for
#P-hard problems has been of long-standing interest and has led to several theoretically
deep and elegant results. One such result was that of Karp and Luby [17] in the context
of #DNF, relying on Monte Carlo sampling. Building on Monte Carlo sampling, Kannan,
Sampath, and Mahaney [16] proposed a quasi-polynomial running time approximation scheme
for #nOBDD.2 In a follow-up work [12], this result was extended to handle context-free
grammars by reducing the problem of counting words of a context-free grammar to estimating
the support size of multilinear (+,×)-programs. It is straightforward to see that the same
reduction can be applied in the context of #DNNF, implying a quasi-polynomial runtime
approximation for #nFBDD. Since then, the question of the existence of a fully polynomial-
time randomized approximation scheme for #nFBDD and its generalizations has remained
open.

In a major breakthrough, Arenas et al. [6] provided an FPRAS for #nOBDD. Their
technique relied on union of sets estimation à la Karp-Luby and the generation of independent
samples via the self-reducibility union property.3 The self-reducibility union property can be
informally stated as follows: The set of models conditioned on a given partial assignment
(according to the variable ordering of the given nOBDD) can be expressed as the union of
models of the states of the given nOBDD. In a follow-up work [7], Arenas et al. observed
that the problem of model counting over structured DNNF (st-DNNF) circuits also admits
FPRAS. In this context, it is worth highlighting that the self-reducibility union property does
not hold for nFBDD and there exists exponential separation between nFBDD and st-DNNF,
i.e., there is a family of functions for which the smallest FBDD are exponentially smaller
than the smallest st-DNNF, and therefore, the problem of whether there exists an FPRAS
for #nFBDD remains open.

3 Technical Overview

Our algorithm proceeds in a bottom-up manner and for every node q of given nFBDD B,
we keep: (1) a number p(q) ∈ (0, 1] which seeks to approximate 1

|mod(q)| , and therefore, 1
p(q)

2 The result of [16] was stated for regular languages, but the underlying techniques can handle #nOBDD.
3 The term self-reducibility union property was coined by Meel, Chakraborty, and Mathur [18] to explain

the high-level idea of [6].

6 An FPRAS for #nFBDD

can be used to estimate |mod(q)|, and (2) nsnt sets of samples S1(q), . . . , Snsnt(q), each a
subset of mod(q), where ns and nt are polynomial in n = |var(B)|, ε−1 and log |B|. Few
comments are in order: we keep many (ns · nt) independent sets of samples so as to rely on
the median of means estimator. As mentioned earlier, our algorithm works in bottom-up
manner, in particular, for a node q, we will compute (p(q), {Sr(q)}r) using the values of p(·)
and {Sr(·)}r of its children.

Ideally, we want every model of q to be in Sr(q) identically and independently with
probability p(q), and thus tat the expected size of Sr(q) is small. However, obtaining iid
samples is computationally expensive, which resulted in quasi-polynomial runtimes in earlier
studies [12]. Recent works on FPRAS for nOBDD achieved independence by leveraging
self-reducibility union property [6, 7], but, as remarked in Section 2.1, the self-reducibility
union property does not hold for nFBDD and therefore, it is not known how to accomplish
independence among samples without giving up on the desiderata of polynomial time.

The key insight in our approach is to give up the desire for independence altogether, in
particular, we do not even ensure pairwise independence, i.e., even for α, α′ ∈ mod(q), it may
not be the case that Pr[α ∈ Sr(q)|α′ ∈ Sr(q)] = Pr[α ∈ Sr(q)]. Of course, we do need to
quantify the dependence. In order to discuss the dependence, we first discuss how we update
p(q) and Sr(q) for decision nodes and ∨-nodes.

Let q = ite(x, q1, q0). Then we compute p(q) and Sr(q) as p(q) =
(

1
p(q0) + 1

p(q1)

)−1
and

Sr(q) =
(

reduce
(

Sr(q0), p(q)
p(q0)

)
⊗ {x 7→ 0}

)
∪

(
reduce

(
Sr(q1), p(q)

p(q1)

)
⊗ {x 7→ 1}

)
, where

reduce(S, p) is the operation that keeps each element of a set S with probability p.
Let q be a ∨-node such that q = q1∨q2 (assuming two children for simplicity). Furthermore,
for simplicity of exposition and for the sake of high-level intuition, assume p(q1) = p(q2).
The technical difficulty for ∨-nodes arises from the fact that it is possible that for a given
α ∈ mod(q), we have α ∈ mod(q1)∩mod(q2). Therefore, in order to ensure no α has undue
advantage even if it lies in the models set of multiple children, we update p(q) and Sr(q) as
follows: we first compute ρ = min(p(q1), p(q2)) and Ŝr(q) = Sr(q1)∪(Sr(q2)\mod(q1)) and
then p(q) = median

0≤j<nt

(
1

ρ·ns

∑(j+1)ns

r=j·ns+1 |Ŝr(q)|
)−1

followed by Sr(q) = reduce
(

Ŝr(q), p(q)
ρ

)
.

Observe that the usage of Sr(q2) \mod(q1) ensures that for every α ∈ mod(q), there is
exactly one child of q′ ∈ children(q) such that if α ∈ Ŝr(q) then α ∈ Sr(q′), and therefore, no
α has undue advantage.

It is worth re-emphasizing the crucial departure in our work from earlier efforts is embrace
of dependence. For instance, consider q = q1 ∨ q2 and q̂ = q1 ∨ q3, then Sr(q) and Sr(q̂) will
of course be reusing samples Sr(q1), and therefore, do not even have pairwise independence.
Now, of course, we need to bound dependence so as to retain any hope of computing p(q) from
Sr(q). To this end, we focus on the following quantity of interest: Pr[α ∈ Sr(q) | α′ ∈ Sr(q)]
for α, α′ ∈ mod(q), which determines the variance for the estimator. In this regard, for
every (α, q), we can define a derivation path, denoted as path(α, q), where for every ∨-node,
path(α, q) is path(α, q′) appended with q, where q′ is the first child of q such that α ∈ mod(q′).
The key observation is that our computations ensure Pr[α ∈ Sr(q) | α′ ∈ Sr(q)] depends
on the first node (starting from the 1-sink) q∗ where the derivation paths path(α, q) and
path(α, q′) diverge. In particular, it turns out:

Pr[α ∈ Sr(q)|α′ ∈ Sr(q)] ≤ p(q)
p(q∗) .

One might wonder whether the above expression suffices: it turns out it does, because
the number of pairs (α, α′) whose derivation paths diverge for the first time at q∗ can be

K. S. Meel and A. de Colnet 7

shown to be bounded by |mod(q)|2

|mod(q∗)| , which suffices to show that the variance of the estimator
can be bounded by constant factor of square of its mean, thus allowing us to use median of
means estimator.

We close off by remarking that the situation is more nuanced than previously described,
as p(q) is itself a random variable. Although the high-level intuition remains consistent, the
technical analysis requires coupling, based on a carefully defined random process, detailed in
Section 6. Simplifying the rigorous technical argument would be an interesting direction of
future research.

4 Algorithm

The core of our FPRAS, approxMCnFBDD_core, takes in a 1-complete, 0-reduced and
alternating nFBDD B. B’s nodes are processed in bottom-up order, so from the sinks to the
source. For each node q, the algorithm computes p(q) which seeks to estimate |mod(q)|−1, and
polynomially-many subsets of mod(q) called sample sets: S1(q), . . . , SN (q). The algorithm
stops after processing the source node qsource and returns p(qsource)−1. The procedure that
computes the content of Sr(q) and the value for p(q) is estimateAndSample(q). Since this
procedure uses randomness, the {Sr(q)}r and p(q) are random variables. Our FPRAS works
towards ensuring that “Pr[α ∈ Sr(q)] = p(q)” holds true for every q ∈ B and α ∈ mod(q).
Thus, if p(q) is a good estimate of |mod(q)|−1, then Sr(q) should be small in expectation.
We put the equality between quotes because it does not make much sense as the left-hand
side is a probability, so a fixed number, whereas the right-hand side is a random variable.

Algorithm 1 estimateAndSample(q) with q = ite(x, q1, q0)

1 p(q) = (1
p(q0) + 1

p(q1))−1

2 for 1 ≤ r ≤ nsnt do
3 Sr(q) =

(
reduce

(
Sr(q0), p(q)

p(q0)

)
⊗ {x 7→ 0}

)
∪

(
reduce

(
Sr(q1), p(q)

p(q1)

)
⊗ {x 7→ 1}

)

Decision nodes and ∨-nodes are handled differently by estimateAndSample. When q is
a decision node ite(x, q1, q0), p(q) is computed deterministically from p(q0) and p(q1), and
Sr(q) is reduced from (Sr(q0)⊗ {x 7→ 0}) ∪ (Sr(q1)⊗ {x 7→ 1}) using the reduce procedure.

Algorithm 2 reduce(S, p) with p ∈ [0, 1]

1 S′ ← ∅
2 for s ∈ S do
3 add s to S′ with probability p

4 return S′

estimateAndSample(q) is more complicated when q is a ∨-node. We explain it gradually.
For starter, let q = q1 ∨ · · · ∨ qk with its children ordered as follows: (q1, . . . , qk), and consider
the problem of approximating |mod(q)| when a sample set S(qi) ⊆ mod(qi) is available
for every i ∈ [k] and b ∈ {0, 1} with the guarantee that Pr[α ∈ S(qi)] = ρ holds for every
α ∈ mod(qi). Every S(qi) is a subset of mod(q). We compute Ŝ(q) = union(q, S(q1), . . . , S(qk))
as follows: for every α ∈ S(qi), α is added to Ŝ(q) if and only if qi is the first child of q

for which α is a model. Simple computations show that Pr[α ∈ Ŝ(q)] = ρ holds for every

8 An FPRAS for #nFBDD

α ∈ mod(q), and therefore ρ−1|Ŝ(q)| is an unbiased estimate of |mod(q)| (i.e., the expected
value of the estimate is |mod(q)|).

Algorithm 3 union(q, S1, . . . , Sk) with children(q) = (q1, . . . , qk)

1 S′ = ∅
2 for 1 ≤ i ≤ k do
3 for α ∈ Si do
4 if α ̸∈ mod(qj) for every j < i then add α to S′

5 return S′

Now suppose that for every i, we only know that Pr[α ∈ S(qi)] = p(qi) for every α ∈
mod(qi) for some number p(qi) independent of α. Then we normalize the probabilities before
computing the union. This is done using the reduce procedure. Let ρ = min(p(q1), . . . , p(qk))
and S̄(qi) = reduce(S(qi), ρ

p(qi)). We have that Pr[α ∈ S̄(qi)] = ρ holds for every α ∈ mod(q).
So Ŝ(q) = union(q, S̄(q1), . . . , S̄(qk)), and ρ−1|Ŝ(q)| is an unbiased estimate of |mod(q)|.

Algorithm 4 estimateAndSample(q) with q = q1 ∨ . . . qk and children(q) = (q1, . . . , qk)

1 ρ = min(p(q1), . . . , p(qk))
2 for 1 ≤ r ≤ nsnt do
3 Ŝr(q) = union

(
q, reduce

(
Sr(q1), ρ

p(q1)
)
, . . . , reduce

(
Sr(qk), ρ

p(qk)
))

4 for 0 ≤ j < nt do
5 Mj = 1

ρ·ns

∑(j+1)ns

r=j·ns+1 |Ŝr(q)|

6 ρ̂ = median
0≤j<nt

(Mj)−1

7 p(q) = min(ρ, ρ̂)
8 for 1 ≤ r ≤ nsnt do
9 Sr(q) = reduce

(
Ŝr(q), p(q)

ρ

)
To find an estimate that is concentrated around |mod(q)|, we use the “median of means”

technique. Suppose that instead of one sample set S(qi) we have several sample sets
S1(qi), S2(qi), . . . , SN (qi) all verifying Pr[α ∈ Sr(qi)] = p(qi). Then define S̄r(qi) similarly
to S̄(qi) and Ŝr(q) similarly to Ŝ(q). Each ρ−1|Ŝr(q)| is an estimate of |mod(q)|. Say
N = nsnt and partition Ŝ1(q), Ŝ2(q), . . . , ŜN (q) into nt batches of ns sets. The median
of means technique computes the average size Mj = 1

ns

∑(j+1)ns

r=j·ns+1 |Ŝr(q)| over each batch
and uses ρ−1median(M1, . . . , Mnt

) to estimate |mod(q)|. The mean computation aims at
reducing the variance of the estimate. The parameter ns can be chosen so that Pr[ρ−1Mj ∈
(1± ε)|mod(q)|] > 1

2 holds true. With the appropriate value for nt, ρ−1median(M1, . . . , Mnt
)

lies in (1± ε)|mod(q)| with high probability (though the estimate is not unbiased anymore).
So this is how estimateAndSample works for ∨-nodes. The median of means serves to

compute ρ̂, the inverse of the estimate of |mod(q)| which in turn is used to compute p(q).
When q is not the source node qsource, we compute sample sets Sr(q) in preparation for
processing of q’s ancestors. For this we reuse Ŝr(q) and compute Sr(q) = reduce(Ŝr(q), p(q)

ρ).
To ensure a polynomial running time, approxMCnFBDD_core terminates as soon as the

number of samples grows too large (Line 7) and returns 0. This output is erroneous but we
will show that the probability of terminating this way is negligible. For parameters carefully

K. S. Meel and A. de Colnet 9

Algorithm 5 approxMCnFBDD_core(B, n, ns, nt, θ)

1 p(1-sink) = 1, p(0-sink) =∞
2 for 1 ≤ r ≤ nsnt do
3 Sr(1-sink) = {α∅}, Sr(0-sink) = ∅
4 for 1 ≤ i ≤ 2n do
5 for q ∈ Li do
6 estimateAndSample(q)
7 if |Sr(q)| ≥ θ then return 0

8 return 1
p(qsource)

chosen, approxMCnFBDD_core returns a good estimate of |B−1(1)| with probability larger
than 1/2. The full FPRAS approxMCnFBDD amplifies this probability to 1− δ by returning
the median output of independent runs of approxMCnFBDD.

Algorithm 6 approxMCnFBDD(B, ε, δ)

1 make B alternating, 1-complete and 0-reduced
2 n = |var(B)|, m = ⌈8 ln(1/δ)⌉
3 κ = ε/(1 + ε), ns = ⌈4n/κ2⌉, nt = ⌈8 ln(16|B|)⌉, θ = 16nsnt(1 + κ)|B|
4 for 1 ≤ j ≤ m do
5 estj = approxMCnFBDD_core(B, n, ns, nt, θ)
6 return median(est1, . . . , estm)

5 Derivation paths

Models can have several accepting paths in an nFBDD. For q a node of B and α ∈ mod(q),
we map (α, q) to a canonical accepting path, called the derivation path of α for q, denoted
by path(α, q). A path P is formally represented with a tuple (V (P), E(P)), with V (P) a
sequence of vertices and E(P) a sequence of edges.

▶ Definition 3. For q ∈ B and α ∈ mod(q), the derivation path path(α, q) is defined as
follows:

If q is the 1-sink then α = α∅ and the only derivation path is path(α∅, q) = ({q}, ∅).
If q = ite(x, q1, q0), let α′ be the restriction of α to var(α) \ {x}, then V (path(α, q)) =
V (path(α′, qα(x))) · q and E(path(α, q)) is E(path(α′, qα(x))) plus the α(x)-edge of q.
If q = q1∨· · ·∨qk with the children ordering children(q) = (q1, . . . , qk), let i be the smallest
integer between 1 and k such that α ∈ mod(qi) then V (path(α, q)) = V (path(α, qi)) · q
and E(path(α, q)) is E(path(α, qi)) plus the edge between qi and q.

Our algorithm constructs sample sets in a way that respect derivation paths. That is, an
assignment α ∈ mod(q) may end up in Sr(q) only if it is derived through path(α, q).

▶ Lemma 4. Let q ∈ B and α ∈ mod(q), let V (path(α, q)) = (q0, q1, . . . , qi−1, qi) with q0 the
1-sink and qi = q. For every j ∈ [0, i− 1], let αj be the restriction of α to var(qj). In a run
of approxMCnFBDD_core, α ∈ Sr(q) holds only if αj ∈ Sr(qj) holds for every j ∈ [0, i− 1].

10 An FPRAS for #nFBDD

Proof. α0 = α∅ ∈ Sr(1-sink) = Sr(q0) holds by construction. Now consider j > 0, it is
sufficient to show that αj ∈ Sr(qj) only if αj−1 ∈ Sr(qj−1).

If qj = ite(x, qj,1, qj,0) then αj = αj−1 ∪ {x 7→ α(x)} and qj−1 = qj,α(x). Looking
at estimateAndSample for decision nodes, one sees that αj ∈ Sr(qj) only if αj−1 ∈
reduce(Sr(qj,α(x)), p(qj)/p(qj−1)), so only if αj−1 ∈ Sr(qj,α(x)) = Sr(qj−1).
If qj is a ∨-node with children(qj) = (q0

j , . . . , qk
j) then αj = αj−1 and there is an i

such that qj−1 = qi
j . Observe that αj ∈ Sr(qj) only if αj ∈ Ŝr(qj) – so only if αj is

reduce(Sr(qℓ
j), ρ/p(qℓ

j)) – for the smallest ℓ such that αj ∈ mod(qℓ
j); so only if αj = αj−1 ∈

Sr(qℓ
j). The definition of path(α, q) implies that ℓ = i. ◀

Given two derivation paths P and P ′. We call their last common prefix nodes denoted by
lcpn(P,P ′), the deepest node where the two paths diverge, that is, the first node contained in
both paths from which the they follow different edges. Note that if P and P ′ are consistent
up to node q′, and q = ite(x, q′, q′), and P follows the 0-edge while P ′ follows the 1-edge,
then the two paths diverge at q′ even though they both contain q.

▶ Definition 5. Let P = ((q0, . . . , qk), (e1, . . . , ek)) and P ′ = ((q′
0, . . . , q′

ℓ), (e′
1, . . . , e′

ℓ)) be
two derivation paths. The last common prefix node, denoted by lcpn(P,P ′), is the node qi for
the biggest i such that (q0, . . . , qi) = (q′

0, . . . , q′
i) and (e1, . . . , ei) = (e′

1, . . . , e′
i).

Note that every derivation path contains the 1-sink for first node, so the last common
prefix node is well-defined. Let V (path(α, q)) = (q0, . . . , qi) with q0 the 1-sink and qi = q.
For every 0 ≤ ℓ ≤ i, we define

I(α, q, ℓ) := {α′ ∈ mod(q) | lcpn(path(α, q), path(α′, q)) = qℓ}.

The following result will play a key role in bounding the variance of estimators in the analysis.

▶ Lemma 6. Let α ∈ mod(q) and V (path(α, q)) = (q0, . . . , qi) with q0 the 1-sink and qi = q.
For every 0 ≤ ℓ ≤ i, |I(α, q, ℓ)| ≤ |mod(q)|

|mod(qℓ)| .

Proof. Let I(α, q, ℓ) = {α1, α2, . . . }. Let αℓ be the restriction of α to var(qℓ). By definition,
every αi is of the form αℓ ∪ βi for some assignment βi to var(q) \ var(qℓ). Consider
α′

ℓ ∈ mod(qℓ), then every α′
ℓ ∪ βi is in mod(q). Since the αis differ on var(q) \ var(qℓ), the

βis are pairwise distinct, and therefore {α′
ℓ ∪ βi}i is a set of |I(α, q, ℓ)| distinct assignments.

Considering all |mod(qℓ)| possible choices for α′
ℓ, we find that {α′

ℓ∪βi}α′
ℓ
,i is a set of |mod(qℓ)|·

|I(α, q, ℓ)| distinct assignments in mod(q). Hence |mod(qℓ)| · |I(α, q, ℓ)| ≤ |mod(q)|. ◀

6 The Framework for the Analysis

We introduce a random process that simulates approxMCnFBDD_core. Our intuition is that,
for every α ∈ mod(q), a statement in the veins of “Pr[α ∈ Sr(q)] = p(q)” should hold. The
problem is that this equality makes no sense because Pr[α ∈ Sr(q)] is a fixed real value
whereas p(q) is a random variable. The variables Sr(q) and p(q) for different q are too
dependent of each other so we use a random process to work with new variables that behave
more nicely. The random process simulates several runs of the algorithm for all possible
values of the p(q)s. There, Sr(q) is simulated by a different variable for each possible run. A
coupling argument then allows us to replace Sr(q) by one of these variables assuming enough
knowledge on the algorithm run up to q, encoded in what we call a history for q.

K. S. Meel and A. de Colnet 11

6.1 History
A history h for a set of nodes Q is a mapping h : Q→ Q ∪ {∞}. h is realizable when there
exists a run of approxMCnFBDD_core∗ that gives the value h(q) to p(q) for every q ∈ Q.
Such a run is said compatible with h. Two histories h for Q and h′ for Q′ are compatible when
h(q) = h′(q) for all q ∈ Q∩Q′. Compatible histories can be merged into an history h∪ h′ for
Q ∪Q′. For q ∈ Q and t ∈ Q, we write h ∪ (q 7→ t) to refer to the history h augmented with
h(q) = t. For q ∈ B, we define the set desc(q) of its descendants by desc(1-sink) = ∅ and
desc(q) = children(q) ∪

⋃
q′∈children(q) desc(q′). Note that q ̸∈ desc(q). We only study histories

realizable for sets Q that are closed for desc, that is, if q ∈ Q and q′ is a descendant of q,
then q′ ∈ Q. Thus we abuse terminology and refer to a history for desc(q) as a history for q.
The only history for the sinks is the vacuous history h∅ for Q = ∅ (because no descendants).

6.2 Random Process
The random process comprises nsnt independent copies identified by the superscript r. For
q ∈ B, t ∈ Q ∪ {∞} and h a realizable history for q, we have a random variable Sr

h,t(q)
whose domain is all possible subsets of mod(q). Sr

h,t(q) simulates Sr(q) in runs of compatible
with h and where the value t is assigned to p(q).

If q is the 0-sink, then mod(q) = ∅ and only Sr
h∅,∞(q) = ∅ is defined.

If q is the 1-sink, then mod(q) = {α∅} and only Sr
h∅,1(q) = {α∅} is defined.

If q = ite(x, q1, q0), then for every Sr
h0,t0

(q0), Sr
h1,t1

(q1) with h1 and h0 realizable and

compatible histories for q1 and q0, let h = h1∪h0∪(q0 7→ t0, q1 7→ t1) and t =
(

1
t0

+ 1
t1

)−1

Sr
h,t(q) = reduce

(
Sr

h0,t0
(q0)⊗ {x 7→ 0}, t

t0

)
∪ reduce

(
Sr

h1,t1
(q1)⊗ {x 7→ 1}, t

t1

)
.

If q = q1 ∨ · · · ∨ qk then for every Sr
h1,t1

(q1), . . . , Sr
hk,tk

(hk) with realizable and pairwise
compatible histories, we define h = h1 ∪ · · · ∪ hk ∪ (q1 7→ t1, . . . , qk 7→ tk), tmin =
min(t1, . . . , tk) and the variable Ŝr

h(q) that simulates Ŝr(q) when the history for q is h

Ŝr
h(q) = union

(
q, reduce

(
Sr

h1,t1
(q1), tmin

t1

)
, . . . , reduce

(
Sr

hk,tk
(hk), tmin

tk

))
.

For all t ≤ tmin we define Sr
h,t(q) = reduce

(
Ŝr

h(q), t
tmin

)
.

We make important observations to motivate the interest of the random process. Let H(q)
be the random variable on the history for q obtained when running approxMCnFBDD_core∗.

▶ Fact 1. It holds that (H(q), (Ŝr(q) | r ∈ R)) = (H(q), (Ŝr
H(q)(q) | r ∈ R)) and

(H(q), p(q), (Sr(q) | r ∈ R)) = (H(q), p(q), (Sr
H(q),p(q)(q)) | r ∈ R))

Fact 1 is explained in more details in the full version of the paper. The equalities should be
interpreted as follows: for every (Ar ⊆ mod(q) | r ∈ R), the following holds:

Pr
[
H(q) = h, p(q) = t,

⋂
r∈R

Sr(q) = Ar
]

= Pr
[
H(q) = h, p(q) = t,

⋂
r∈R

Sr
h,t(q) = Ar

]
Pr

[
H(q) = h and

⋂
r∈R

Ŝr(q) = Ar
]

= Pr
[
H(q) = h and

⋂
r∈R

Ŝr
h(q) = Ar

]
.

A second key observation is that the variables Sr
h,t(q) and Ŝr

h(q) are independent of H(q),
p(q), Sr(q) and Ŝr(q). This is because the latter variables comes from the algorithm while
the former are defined within the random process, and the two do not interact in any way.

12 An FPRAS for #nFBDD

▶ Fact 2. The variables Sr
h,t(q) and Ŝr

h(q) are independent of any combination of H(q′),
p(q′), Sr(q′) and Ŝr(q′) for every q′ (including q′ = q).

In the random process we have the correct variant of the equality “Pr[α ∈ Sr(q)] = p(q)”.

▶ Lemma 7. For every Sr
h,t(q) and α ∈ mod(q), it holds that Pr[α ∈ Sr

h,t(q)] = t. In addition,
if q is a ∨-node with children(q) = (q1, . . . , qk) then Pr[α ∈ Ŝr

h(q)] = min(h(q1), . . . , h(qk)).

▶ Lemma 8. For every Sr
h,t(q) with children(q) = (q1, . . . , qk) and α, α′ ∈ mod(q) with α ̸= α′,

let t∗ = h(lcpn(path(α, q), path(α′, q)), then we have that Pr[α ∈ Sr
h,t(q) | α′ ∈ Sr

h,t(q)] ≤ t
t∗

and if q is ∨-node then Pr[α ∈ Ŝr
h(q) | α′ ∈ Ŝr

h(q)] ≤ min(h(q1),...,h(qk))
t∗ .

Lemmas 7 and 8 are proved in appendix. Compared to “Pr[α ∈ Sr(q)] = p(q)”, there is
nothing wrong with the lemmas as t, t′ and the h(qi)s are fixed real numbers.

7 Analysis

We now conduct the analysis of approxMCnFBDD. The hardest part to analyze is the core
algorithm approxMCnFBDD_core, for which we will prove the following.

▶ Lemma 9. Let B be a 1-complete 0-reduced and alternating nFBDD over n variables. Let
m = maxi |Li|, ε > 0, and κ = ε

1+ε . If ns ≥ 4n
κ2 , nt ≥ 8 ln(16|B|) and θ = 16nsnt(1 + κ)|B|

then approxMCnFBDD_core(B, n, ns, nt, θ) runs in time O(nsnt log(nt) · θ · |B|2) and returns
est with the guarantee Pr

[
est /∈ (1± ε)|B−1(1)|

]
≤ 1

4 .

Our main result is obtained decreasing this 1/4 down to any δ > 0 with the median technique.

▶ Theorem 1. Let B be an nFBDD over n variables, ε > 0 and δ > 0. Algorithm
approxMCnFBDD(B, ε, δ) runs in time O(n5ε−4 log(δ−1)|B|6 log |B|) and returns est with the
guarantee that Pr

[
est ∈ (1± ε)|B−1(1)|

]
≥ 1− δ.

Proof. Let est1, . . . , estm be the estimates from m independent calls to approxMCnFBDD_core.
Let Xi be the indicator variable that takes value 1 if and only if esti ̸∈ (1± ε)|B−1(1)|, and
define X̄ = X1 + · · ·+ Xm. By Lemma 9, E[X̄] ≤ m/4. Hoeffding bound gives

Pr
[
median(Xi)

1≤i≤m

̸∈ (1± ε)|B−1(1)|
]

= Pr
[
X̄ >

m

2

]
≤ Pr

[
X̄ − E[X̄] >

m

4

]
≤ e−m/8 ≤ δ.

The running time is O(| log(1
δ)|) times that of approxMCnFBDD_core(B′, n, ns, nt) where B′

is B after it has been made 1-complete, 0-reduced, and alternating. By Lemma 2, |B′| =
O(n|B|2) and B′ is constructed in time O(n|B|2). So each call to approxMCnFBDD_core(B′, n,

ns, nt) takes time O(n5|B|6 log |B|ε−4) ◀

Recall that approxMCnFBDD_core∗ is approxMCnFBDD_core without the terminating con-
dition of Line 7, that is, where the sets Sr(q) can grow big. Analyzing approxMCnFBDD_core∗

is enough to prove Lemma 9 without running time requirements. In particular, it is enough to
prove Lemmas 10 and 11. For these lemmas the settings described in Lemma 9 are assumed.

▶ Lemma 10. The probability that approxMCnFBDD_core∗(B, n, ns, nt, θ) computes p(q) ̸∈
(1± κ)|mod(q)|−1 for some q ∈ B is at most 1/8.

▶ Lemma 11. The probability that approxMCnFBDD_core∗(B, n, ns, nt, θ) constructs sets
Sr(q) such that |Sr(q)| ≥ θ for some q ∈ B is at most 1/8.

K. S. Meel and A. de Colnet 13

Proof of Lemma 9. Let A(∗) = approxMCnFBDD_core(∗)(B, n, ns, nt, θ).

Pr
A

[
est ̸∈ (1± ε)|B−1(1)|

]
= Pr

A∗

[⋃
r,q

|Sr(q)| ≥ θ

]
+ Pr

A∗

[⋂
r,q

|Sr(q)| < θ and est ̸∈ (1± ε)|B−1(1)|
]

≤ Pr
A∗

[⋃
r,q

|Sr(q)| ≥ θ

]
+ Pr

A∗

[
est ̸∈ (1± ε)|B−1(1)|

]
≤ Pr

A∗

[⋃
r,q

|Sr(q)| ≥ θ

]
+ Pr

A∗

[⋃
q

p(q) ̸∈ 1
(1± ε)|mod(q)|

]

where q ranges over B’s nodes and r ranges in [nsnt]. The parameter κ has been set so that
p(q) ̸∈ 1±κ

|mod(q)| implies p(q) ̸∈ 1
(1±ε)|mod(q)| so, using Lemmas 10 and 11:

Pr
A

[
est ̸∈ (1± ε)|B−1(1)|

]
≤ Pr

A∗

[⋃
r,q

|Sr(q)| ≥ θ

]
+ Pr

A∗

[⋃
q

p(q) ̸∈ 1± κ

|mod(q)|

]
≤ 1

4

The algorithm stops whenever the number of samples grows beyond θ so, for the worst-
case running time, the number of samples is less than θ. Each node goes once through
estimateAndSample. For a decision node, estimateAndSample takes time O(nsntθ). For a ∨-
node q, estimateAndSample calls union nsnt times, does a median of means where it computes
the median of nt means of ns integers, and updates the sample sets. Updating the sample
sets takes time O(nsntθ). Each mean costs O(ns) and the median requires sorting so the
whole thing is done in O(nsnt log(nt)) time. For each sample, the union tests whether it is a
model of the children of q, model checking is a linear-time operation on nFBDD so the total
cost of one union is O(|children(q)| · |B| · θ). So the total cost of estimateAndSample for all
∨-nodes is at most O(nsnt log(nt) · θ · |B| ·

∑
q |children(q)|) = O(nsnt log(nt) · θ · |B|2). ◀

It remains to prove Lemmas 10 and 11.

7.1 Proof of Lemma 10
Let ∆(q) be the interval 1±κ

|mod(q)| and ∇(q) be the interval |mod(q)|
1±κ .

▷ Claim 12. The event
⋃

q∈B (p(q) ̸∈ ∆(q)) occurs if and only if the event⋃
q∈L>0

(p(q) ̸∈ ∆(q) and for all q′ ∈ desc(q), p(q′) ∈ ∆(q′)) occurs.

Proof. The “if” direction is trivial. For the other direction, suppose that p(q) ̸∈ ∆(q) holds
for some q. Let i be the smallest integer such that there is q ∈ Li and p(q) ̸∈ ∆(q). i cannot be
0 because the only node in L0 is the 1-sink and p(1-sink) = 1 = |mod(1-sink)|−1 ∈ ∆(1-sink).
So q ∈ L>0 and, by minimality of i, we have that p(q′) ∈ ∆(q′) for all q′ ∈ desc(q). ◀

Pr
[⋃

q∈B

p(q) ̸∈ ∆(q)
]

= Pr
[⋃

q∈L>0

p(q) ̸∈ ∆(q) and ∀q′ ∈ desc(q), p(q′) ∈ ∆(q′)
]

≤
∑

q∈L>0

Pr [p(q) ̸∈ ∆(q) and ∀q′ ∈ desc(q), p(q′) ∈ ∆(q′)]︸ ︷︷ ︸
P (q)

.
(1)

We bound P (q) from above. If q = ite(x, q1, q0) is a decision node, then by construction,
p(q0) ∈ ∆(q0) and p(q1) ∈ ∆(q1) implies p(q)−1 ∈ |mod(q0)|+|mod(q1)|

1±κ = |mod(q)|
1±κ = ∇(q) with

probability 1. Thus P (q) = 0 for decision nodes and only the case of ∨-nodes remains.

14 An FPRAS for #nFBDD

Going to the random process
To bound P (q) when q is a ∨-node, we move the analysis to the random process, whose
variables we can analyze using Lemmas 7 and 8. Consider the set Hq of realizable histories for
q and denote by H(q) = h the event that the algorithm sets p(q′) to h(q′) for all q′ ∈ desc(q).

P (q) = Pr
[⋃

h∈Hq

H(q) = h and p(q) ̸∈ ∆(q) and for all q′ ∈ desc(q), p(q′) ∈ ∆(q′)
]

≤
∑

h∈Hq

Pr [H(q) = h and p(q) ̸∈ ∆(q) and for all q′ ∈ desc(q), p(q′) ∈ ∆(q′)]

Let H∗
q be the subset of Hq where h(q′) ∈ ∆(q′) holds for every q′ ∈ desc(q), then

P (q) ≤
∑

h∈H∗
q

Pr [H(q) = h and p(q) ̸∈ ∆(q) and for all q′ ∈ desc(q), p(q′) ∈ ∆(q′)]

=
∑

h∈H∗
q

Pr [H(q) = h and p(q) ̸∈ ∆(q)] .

Let ρ = min(p(q1), . . . , p(qk)), ρh = min(h(q1), . . . , h(qk)) and Mj = 1
ρ·ns

∑(j+1)ns

r=j·ns+1 |Ŝr(q)|.
Note that ρ is a random variable whereas ρh is a constant. If H(q) = h then the events
ρ = ρh and p(q) = min(ρh, ρ̂) both hold, where ρ̂ = median(M0, . . . , Mnt−1)−1.

▷ Claim 13. If H(q) = h then ρ̂ ∈ ∆(q) implies that p(q) ∈ ∆(q).

Proof. H(q) = h implies p(q) = min(ρh, ρ̂). If p(q) = ρ̂ holds then, trivially, ρ̂ ∈ ∆(q) implies
that p(q) ∈ ∆(q). If p(q) = ρh occurs then ρ̂ ∈ ∆(q) implies that p(q) ≤ ρ̂ ≤ 1+κ

|mod(q)| and,
since h ∈ H∗

q guarantees that ρh ≥ 1−κ
maxj∈[k] |mod(qj)| ≥

1−κ
|mod(q)| , we have that p(q) ∈ ∆(q). ◀

Let Mj,h = 1
ρhns

∑(j+1)ns

r=j·ns+1 |Ŝr
h(q)|. Using that H(q) = h implies ρ = ρh and Fact 1, we find

that (H(q), medianj(Mj)) = (H(q), medianj(Mj,H(q))).

Pr [H(q) = h and p(q) ̸∈ ∆(q)] ≤ Pr [H(q) = h and ρ̂ ̸∈ ∆(q)] (Claim 13)
= Pr [H(q) = h and median0≤j<nt(Mj) ̸∈ ∇(q)] (by definition of ρ̂)
≤ Pr [H(q) = h and median0≤j<nt

(Mj,h) ̸∈ ∇(q)] (Fact 1)
= Pr[H(q) = h] Pr [median0≤j<nt

(Mj,h) ̸∈ ∇(q)] (Fact 2)

We have reached our goal to replace variables by their counterpart in the random process.
Now we bound Pr [medianj(Mj,h) ̸∈ ∇(q)] using Chebyshev’s inequality and Hoeffding bound.

Variance upper bound
By Lemma 7, the expected value of |Ŝr

h(q)| is µ = ρh|mod(q)|. Now for the variance,

Var
[
|Ŝr

h(q)|
]
≤ E

[
|Ŝr

h(q)|2
]

= µ +
∑

α,α′∈mod(q)
α̸=α′

Pr
[
α ∈ Ŝr

h(q) and α′ ∈ Ŝr
h(q)

]

= µ +
∑

α,α′∈mod(q)
α̸=α′

Pr
[
α ∈ Ŝr

h(q) | α′ ∈ Ŝr
h(q)

]
Pr

[
α′ ∈ Ŝr

h(q)
]

≤ µ +
∑

α,α′∈mod(q)
α ̸=α′

ρ2
h

h(lcpn(path(q, α), path(q, α′)) (Lemmas 7 and 8)

K. S. Meel and A. de Colnet 15

Let P = path(α, q) and V (P) = (q0
α, q1

α, q2
α, . . . , qi−1

α , q), with q0
α = 1-sink. Let P ′ =

path(α′, q) for any α′ ∈ mod(q) distinct from α. Then lcpn(P,P ′) is one of the qj
α. Recall

that I(α, q, j) is the set of α′ ∈ mod(q) such that lcpn(P,P ′) = qj
α.∑

α,α′∈mod(q)
α̸=α′

ρ2
h

h(lcpn(path(q, α), path(q, α′)) =
∑

α∈mod(q)

∑
j∈[0,i−1]

|I(α, q, j)| ρ2
h

h(qj
α)

≤
∑

α∈mod(q)

∑
j∈[0,i−1]

ρ2
h|mod(q)|

|mod(qj
α)| · h(qj

α)
(Lemma 6)

Because h ∈ H∗
q and h(qj

α) is in ∆(qj
α) we have |mod(qj

α)| · h(qj
α) ≥ 1− κ.

∑
α∈mod(q)

∑
j∈[0,i−1]

ρ2
h|mod(q)|

|mod(qj
α)| · h(qj

α)
≤ ρ2

h

1− κ

∑
α∈mod(q)

∑
j∈[0,i−1]

|mod(q)| ≤ µ2n

1− κ

Putting everything together, we conclude that Var[|Ŝr
h(q)|] ≤ µ + µ2n

1−κ .

Median of means
We have that E[Mj,h] = µ

ρh
= |mod(q)| and, by independence of the variables {Ŝr

h(q)}r

Var[Mj,h] =
(j+1)ns∑

r=j·ns+1

Var[|Ŝr
h(q)|]

ρ2
hn2

s

≤ 1
ρ2

hns

(
µ + µ2n

1− κ

)
= 1

ns

(
|mod(q)|

ρh
+ n|mod(q)|2

1− κ

)
.

Mj,h ∈ |mod(q)|
1±κ occurs if and only if −κ|mod(q)|

1+κ ≤ Mj,h − |mod(q)| ≤ κ|mod(q)|
1−κ , which is

subsumed by |Mj,h − |mod(q)|| ≤ κ|mod(q)|
1+κ . So Chebyshev’s inequality gives

Pr
[
Mj,h /∈ |mod(q)|

1± κ

]
≤ Pr

[∣∣Mj,h − |mod(q)|
∣∣ >

κ|mod(q)|
1 + κ

]
≤ (1 + κ)2

κ2|mod(q)|2 Var [Mj,h]

≤ (1 + κ)2

κ2ns

(
1

|mod(q)|ρh
+ n

1− κ

)
≤ (1 + κ)2

κ2ns

(
1

1− κ
+ n

1− κ

)
(ρh ≥ 1−κ

maxj |mod(qj)| ≥
1−κ

|mod(q)|)

≤ 2n

κ2ns
≤ 1

4 ((1+κ)2

1−κ decreases to 1 and ns ≥ 4n
κ2)

By taking the median, we decrease the 1
4 upper bound to a much smaller value. Let Ej be

the indicator variable taking value 1 if and only if Mj,h ̸∈ |mod(q)|
1±κ and let Ē =

∑nt−1
j=0 Ej .

We have E[Ē] ≤ nt

4 so Hoeffding bound gives

Pr
[
median
0≤j<nt

(Mj,h) ̸∈ |mod(q)|
1± κ

]
= Pr

[
Ē >

nt

2

]
≤ Pr

[
Ē − E(Ē) ≥ nt

4

]
≤ e−nt/8 ≤ 1

16|B|

where the last inequality comes from nt ≥ 8 ln(16|B|). Putting everything together we have

P (q) ≤
∑

h∈H∗
q

1
16|B| Pr[H(q) = h] ≤ 1

16|B| .

Used in (1), this gives Pr
[⋃

q∈B p(q) ̸∈ ∆(q)
]
≤ 1

16 , thus finishing the proof of Lemma 10.
We have shown a 1

16 bound instead of a 1
8 bound in preparation for the proof of Lemma 11.

16 An FPRAS for #nFBDD

7.2 Proof of Lemma 11
We first bound Pr

[⋃
r,q |Sr(q)| ≥ θ

]
from above by

Pr

⋃
r,q

|Sr(q)| ≥ θ and
⋂

q′∈B

p(q′) ∈ 1± κ

|mod(q′)|


︸ ︷︷ ︸

P1

+ Pr

 ⋃
q′∈B

p(q′) ̸∈ 1± κ

|mod(q′)|


︸ ︷︷ ︸

P2

.

We have already a 1
16 upper bound on P2, so we focus on P1.

P1 ≤
∑
r,q

Pr
[
|Sr(q)| ≥ θ and

⋂
q′∈B

p(q′) ∈ ∆(q′)
]

(Union bound)

≤ 1
θ
·
∑
r,q

E
[
|Sr(q)| ·

∏
q′∈B

1 (p(q′) ∈ ∆(q′))
]

(Markov’s inequality)

≤ 1
θ
·
∑
r,q

E [|Sr(q)| · 1 (p(q) ∈ ∆(q))]︸ ︷︷ ︸
E(r,q)

To bound E(r, q) we introduce the history of q and move to the variables of the random
process. Recall that Hq is the set of all realizable histories for q.

E(r, q) =
∑

t∈∆(q)

E [|Sr(q)| · 1(p(q) = t)] =
∑

h∈Hq

∑
t∈∆(q)

E [|Sr(q)| · 1(p(q) = t and H(q) = h)]

=
∑

h∈Hq

∑
t∈∆(q)

E
[
|Sr

h,t(q)| · 1(p(q) = t and H(q) = h)
]

(Fact 1)

=
∑

h∈Hq

∑
t∈∆(q)

E
[
|Sr

h,t(q)|
]
· Pr[p(q) = t and H(q) = h] (Fact 2)

=
∑

h∈Hq

∑
t∈∆(q)

t · |mod(q)| · Pr[p(q) = t and H(q) = h] (Lemma 7)

≤
∑

h∈Hq

∑
t∈∆(q)

(1 + κ) · Pr[p(q) = t and H(q) = h] ≤ (1 + κ) (t ≤ 1+κ
|mod(q)|)

It follows that P1 ≤ (1+κ)nsnt|B|
θ ≤ 1

16 (because θ ≥ 16(1 + κ)nsnt|B|) and therefore
Pr

[⋃
r,q |Sr(q)| ≥ θ

]
≤ 1

16 + 1
16 = 1

8 . This finishes the proof of Lemma 11.

8 Conclusion

In this paper, we resolved the open problem of designing an FPRAS for #nFBDD. Our
work also introduces a new technique to quantify dependence, and it would be interesting
to extend this technique to other languages that generalize nFBDD. Another promising
direction for future work would be to improve the complexity of the proposed FPRAS to
enable practical adoption.

References
1 Antoine Amarilli, Marcelo Arenas, YooJung Choi, Mikaël Monet, Guy Van den Broeck, and

Benjie Wang. A circus of circuits: Connections between decision diagrams, circuits, and
automata. arXiv preprint arXiv:2404.09674, 2024.

K. S. Meel and A. de Colnet 17

2 Antoine Amarilli and Florent Capelli. Tractable circuits in database theory. SIGMOD Rec.,
53(2):6–20, 2024. doi:10.1145/3685980.3685982.

3 Antoine Amarilli and Florent Capelli. Tractable circuits in database theory. ACM SIGMOD
Record, 53(2):6–20, 2024.

4 Antoine Amarilli, Florent Capelli, Mikaël Monet, and Pierre Senellart. Connecting knowledge
compilation classes and width parameters. Theory Comput. Syst., 64(5):861–914, 2020. URL:
https://doi.org/10.1007/s00224-019-09930-2, doi:10.1007/S00224-019-09930-2.

5 Antoine Amarilli, Timothy van Bremen, and Kuldeep S Meel. Conjunctive queries on
probabilistic graphs: The limits of approximability. In 27th International Conference on
Database Theory, 2024.

6 Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. Efficient
logspace classes for enumeration, counting, and uniform generation. In Proceedings of the 38th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2019,
pages 59–73. ACM, 2019. doi:10.1145/3294052.3319704.

7 Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. When
is approximate counting for conjunctive queries tractable? In STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 1015–1027. ACM, 2021. doi:
10.1145/3406325.3451014.

8 Paul Beame and Vincent Liew. New limits for knowledge compilation and applications to
exact model counting. arXiv preprint arXiv:1506.02639, 2015.

9 Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986. doi:10.1109/TC.1986.1676819.

10 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res.,
17:229–264, 2002. URL: https://doi.org/10.1613/jair.989, doi:10.1613/JAIR.989.

11 Daniel Deutch, Nave Frost, Benny Kimelfeld, and Mikaël Monet. Computing the shapley
value of facts in query answering. In SIGMOD ’22: International Conference on Management
of Data, pages 1570–1583. ACM, 2022. doi:10.1145/3514221.3517912.

12 Vivek Gore, Mark Jerrum, Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. A quasi-
polynomial-time algorithm for sampling words from a context-free language. Inf. Comput.,
134(1):59–74, 1997. URL: https://doi.org/10.1006/inco.1997.2621, doi:10.1006/INCO.
1997.2621.

13 Abhay Kumar Jha and Dan Suciu. On the tractability of query compilation and bounded
treewidth. In 15th International Conference on Database Theory, ICDT ’12, pages 249–261.
ACM, 2012. doi:10.1145/2274576.2274603.

14 Abhay Kumar Jha and Dan Suciu. Knowledge compilation meets database theory: Compiling
queries to decision diagrams. Theory Comput. Syst., 52(3):403–440, 2013. URL: https:
//doi.org/10.1007/s00224-012-9392-5, doi:10.1007/S00224-012-9392-5.

15 Sheldon B. Akers Jr. Binary decision diagrams. IEEE Trans. Computers, 27(6):509–516, 1978.
doi:10.1109/TC.1978.1675141.

16 Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. Counting and random generation of
strings in regular languages. In Proceedings of the Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 551–557. ACM/SIAM, 1995. URL: http://dl.acm.org/citation.
cfm?id=313651.313803.

17 Richard M. Karp and Michael Luby. Monte-carlo algorithms for enumeration and reliability
problems. In 24th Annual Symposium on Foundations of Computer Science, Tucson, Arizona,
USA, 7-9 November 1983, pages 56–64. IEEE Computer Society, 1983. doi:10.1109/SFCS.
1983.35.

18 Kuldeep S. Meel, Sourav Chakraborty, and Umang Mathur. A faster FPRAS for #nfa. Proc.
ACM Manag. Data, 2(2):112, 2024. doi:10.1145/3651613.

19 Stefan Mengel. Counting, Knowledge Compilation and Applications. PhD thesis, Université
d’Artois, 2021.

https://doi.org/10.1145/3685980.3685982
https://doi.org/10.1007/s00224-019-09930-2
https://doi.org/10.1007/S00224-019-09930-2
https://doi.org/10.1145/3294052.3319704
https://doi.org/10.1145/3406325.3451014
https://doi.org/10.1145/3406325.3451014
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1613/jair.989
https://doi.org/10.1613/JAIR.989
https://doi.org/10.1145/3514221.3517912
https://doi.org/10.1006/inco.1997.2621
https://doi.org/10.1006/INCO.1997.2621
https://doi.org/10.1006/INCO.1997.2621
https://doi.org/10.1145/2274576.2274603
https://doi.org/10.1007/s00224-012-9392-5
https://doi.org/10.1007/s00224-012-9392-5
https://doi.org/10.1007/S00224-012-9392-5
https://doi.org/10.1109/TC.1978.1675141
http://dl.acm.org/citation.cfm?id=313651.313803
http://dl.acm.org/citation.cfm?id=313651.313803
https://doi.org/10.1109/SFCS.1983.35
https://doi.org/10.1109/SFCS.1983.35
https://doi.org/10.1145/3651613

18 An FPRAS for #nFBDD

20 Mikaël Monet. Solving a special case of the intensional vs extensional conjecture in probabilistic
databases. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2020, pages 149–163. ACM, 2020. doi:10.1145/3375395.3387642.

21 Mikaël Monet and Dan Olteanu. Towards deterministic decomposable circuits for safe queries.
In Proceedings of the 12th Alberto Mendelzon International Workshop on Foundations of
Data Management, volume 2100 of CEUR Workshop Proceedings. CEUR-WS.org, 2018. URL:
https://ceur-ws.org/Vol-2100/paper19.pdf.

22 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979. doi:10.1137/0208032.

23 Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000. URL:
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/.

A Appendix

▶ Lemma 7. For every Sr
h,t(q) and α ∈ mod(q), it holds that Pr[α ∈ Sr

h,t(q)] = t. In addition,
if q is a ∨-node with children(q) = (q1, . . . , qk) then Pr[α ∈ Ŝr

h(q)] = min(h(q1), . . . , h(qk)).

Proof. Let q ∈ Li. We proceed by induction on i. The base case i = 0 is immediate since
Sr

h∅,1(1-sink) = {α∅} and Sr
h∅,∅(0-sink) = ∅ are the only variables for L0 (and 1

∞ = 0 by
definition). Now let i > 0, q ∈ Li, and suppose that the statement holds for all Sr

h′,t′(q′)
and α′ ∈ mod(q′) with q′ ∈ L<i. If i is odd then q is a decision node ite(x, q1, q0) with q0
and q1 in Li−1 (because B is alternating). Let b = α(x) and let α′ be the restriction of α to
var(α) \ {x}. Then, by induction,

Pr
[
α ∈ Sr

h,t(q)
]

= Pr
[
α ∈ reduce

(
Sr

hb,tb
(qb), t

tb

)
⊗ {x 7→ b}

]
= Pr

[
α′ ∈ Sr

hb,tb
(qb)

]
Pr

[
α′ ∈ reduce

(
Sr

hb,tb
(qb), t

tb

) ∣∣∣ α′ ∈ Sr
hb,tb

(qb)
]

= tb ·
t

tb
= t

Now if i is even then q is a ∨-node with children children(q) = (q1, . . . , qk) all in Li−1. Let j

be the smallest integer such that α ∈ mod(qj) and let tmin = min(h(q1), . . . , h(qk)). Then

Pr
[
α ∈ Ŝr

h(q)
]

= Pr
[
α ∈ reduce

(
Sr

hj ,tj
(qj), tmin

tj

)]
= Pr

[
α ∈ Sr

hj ,tj
(qj)

]
·Pr

[
α ∈ reduce

(
Sr

hj ,tj
(qj), tmin

tj

) ∣∣∣ α ∈ Sr
hj ,tj

(qj)
]

= tj ·
tmin

tj
= tmin

And for t ≤ tmin we have that Pr
[
α ∈ Sr

h,t(q)
]

= Pr
[
α ∈ reduce

(
Ŝr

h(q), t
tmin

)]
= Pr

[
α ∈ Ŝr

h(q)
]

Pr
[
α ∈ reduce

(
Ŝr

h(q), t

tmin

) ∣∣∣ α ∈ Ŝr
h(q)

]
= tmin ·

t

tmin
= t ◀

▶ Lemma 8. For every Sr
h,t(q) with children(q) = (q1, . . . , qk) and α, α′ ∈ mod(q) with α ̸= α′,

let t∗ = h(lcpn(path(α, q), path(α′, q)), then we have that Pr[α ∈ Sr
h,t(q) | α′ ∈ Sr

h,t(q)] ≤ t
t∗

and if q is ∨-node then Pr[α ∈ Ŝr
h(q) | α′ ∈ Ŝr

h(q)] ≤ min(h(q1),...,h(qk))
t∗ .

Proof. We are going to prove a stronger statement, namely, that for every i, for every q

and q′ (potentially q = q′) in Li and every t and t′ such that t = t′ when q = q′, and
every α ∈ mod(q) and α′ ∈ mod(q′), and every compatible histories h and h′ for q and q′,
respectively, we have that

Pr
[
α ∈ Sr

h,t(q) and α′ ∈ Sr
h′,t′(q′)

]
≤ tt′

t∗ . (2)

https://doi.org/10.1145/3375395.3387642
https://ceur-ws.org/Vol-2100/paper19.pdf
https://doi.org/10.1137/0208032
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/

K. S. Meel and A. de Colnet 19

where t∗ = t if (q, α) = (q′, α′) and t∗ = h(lcpn(path(α, q), path(α′, q′)) otherwise. In addition
if i is even, so q and q′ are ∨-nodes, then

Pr
[
α ∈ Ŝr

h(q) and α′ ∈ Ŝr
h′(q′)

]
≤ tmint′

min
t∗ . (3)

where tmin = min(h(c) | c ∈ children(q)) and t′
min = min(h′(c) | c ∈ children(q′)) and t∗ = tmin

if (q, α) = (q′, α′) and t∗ = h(lcpn(path(α, q), path(α′, q′)) otherwise.
The inequalities (2) and (3) are straightforward when (α, q) = (α′, q′) because then

h = h′ (by compatibility) and t = t′ = t∗ or tmin = t′
min = t∗ and we can use Lemma 7. In

particular (2) holds when q = q′ = 1-sink. Now we assume (α, q) ̸= (α′, q′) and proceed by
induction on i. The base case i = 0 holds true by the previous remark (note that neither q

nor q′ can be the 0-sink because mod(q) and mod(q′) must not be empty).

Case i odd. In this case q and q′ are decision nodes. Let q = ite(x, q1, q0) and
q′ = ite(y, q′

1, q′
0). Then h = h0 ∪ h1 ∪ {q0 7→ t0, q1 7→ t1} for some compatible histories

h0 and h1 for q0 and q1, respectively, and t0 and t1 such that t = (1
t0

+ 1
t1

)−1. Similarly,
h′ = h′

0 ∪ h′
1 ∪ {q′

0 7→ t′
0, q′

1 7→ t′
1}. Let b = α(x) and c = α′(y). Let also β be the restriction

of α to var(α) \ {x} and β′ be the restriction of α′ to var(α′) \ {y}. Then

Pr[α ∈ Sr
h,t(q) and α′ ∈ Sr

h′,t′(q′)]

= Pr
[
β ∈ reduce

(
Sr

hb,tb
(qb), t

tb

)
, β′ ∈ reduce

(
Sr

h′
c,t′

c
(q′

c), t′

t′
c

)
∣∣∣ β ∈ Sr

hb,tb
(qb), β′ ∈ Sr

h′
c,t′

c
(q′

c)
]

Pr
[
β ∈ Sr

hb,tb
(qb) and β′ ∈ Sr

h′
c,t′

c
(q′

c)
]

Now, because q and q′ are both in Li, neither is an ancestor of the other and thus the two
reduce are independent: the output of one reduce does not modify the set fed into the second
reduce nor its output. Thus the probability becomes

Pr
[
β ∈ Sr

hb,tb
(qb), β′ ∈ Sr

h′
c,t′

c
(q′

c)
]
· Pr

[
β ∈ reduce

(
Sr

hb,tb
(qb), t

tb

) ∣∣∣ β ∈ Sr
hb,tb

(qb)
]

·Pr
[
β′ ∈ reduce

(
Sr

h′
c,t′

c
(q′

c), t′

t′
c

) ∣∣∣ β′ ∈ Sr
h′

c,t′
c
(q′

c)
]

which is equal to tt′

tbt′
c

Pr
[
β ∈ Sr

hb,tb
(qb) and β′ ∈ Sr

h′
c,t′

c
(q′

c)
]
. Now, if (β, qb) = (β′, q′

c)

then tb = t′
c (because h and h′ are compatible) and Pr

[
β ∈ Sr

hb,tb
(qb) and β′ ∈ Sr

h′
c,t′

c
(q′

c)
]

= Pr
[
β ∈ Sr

hb,tb
(qb)

]
= tb = t′

c by Lemma 7. So Pr[α ∈ Sr
h,t(q) and α′ ∈ Sr

h′,t′(q′)] ≤ tt′

tb
=

tt′

h(qb) . By assumption, (α, q) ̸= (α′, q′), if q ̸= q′ then the two derivation paths path(α, q) and
path(α′, q′) diverge for the first time at qb, and if q = q′ then x = y and α(x) = 1 − α′(x)
(because (α, q) ̸= (α′, q′) by assumption). In this case the derivation paths still diverge for
the first time at qb: one follows the 0-edge and the other follows the 1-edge. So in both cases
lcpn(path(α, q), path(α′, q′)) = qb and we are done. We still have (β, qb) ̸= (β′, q′

c) to consider.
In this case the paths path(β, qb) and path(β′, q′

c) diverge for the first time at some node
q∗ below qb and q′

c so by induction Pr
[
β ∈ Sr

hb,tb
(qb) and β′ ∈ Sr

h′
c,t′

c
(q′

c)
]
≤ tbt′

c/hb(q∗) =
tbt′

c/h(q∗). So Pr[α ∈ Sr
h,t(q) and α′ ∈ Sr

h′,t′(q′)] ≤ tt′/h(q∗). But q∗ is also the first node
where path(α, q) and path(α′, q′) diverge, hence the result.

20 An FPRAS for #nFBDD

Case i even. In this case q and q′ are both ∨-nodes. Say q = q1 ∨ · · · ∨ qk and
q′ = q′

1∨· · ·∨q′
m. Then h = h1∪· · ·∪hk∪{q1 7→ t1, . . . , qk 7→ tk} and h′ = h′

1∪· · ·∪h′
k∪{q′

1 7→
t′
1, . . . , q′

m 7→ t′
m}. Let tmin = min(t1, . . . , tk) and t′

min = min(t′
1, . . . , t′

m).

Pr
[
α ∈ Sr

h,t(q) and α′ ∈ Sr
h′,t′(q′)

]
= Pr

[
α ∈ reduce

(
Ŝr

h(q), t

tmin

)
and α′ ∈ reduce

(
Ŝr

h′(q′), t′

t′
min

)]
= Pr

[
α ∈ reduce

(
Ŝr

h(q), t

tmin

)
, α′ ∈ reduce

(
Ŝr

h′(q′), t′

t′
min

) ∣∣∣α ∈ Ŝr
h(q), α′ ∈ Ŝr

h′(q′)
]

· Pr
[
α ∈ Ŝr

h(q) and α′ ∈ Ŝr
h′(q′)

]
The reduce events are independent because q and q′ both belong to Li and thus neither in
an ancestor of the other: the output of the first reduce does not influence the output of the
second one, even with the knowledge that α ∈ Ŝr

h(q) and α′ ∈ Ŝr
h′(q′). So the probability

becomes

Pr
[
α ∈ reduce

(
Ŝr

h(q), t

tmin

) ∣∣∣α ∈ Ŝr
h(q)

]
Pr

[
α′ ∈ reduce

(
Ŝr

h′(q′), t′

t′
min

) ∣∣∣α′ ∈ Ŝr
h′(q′)

]
Pr

[
α ∈ Ŝr

h(q) and α′ ∈ Ŝr
h′(q′)

]
which is tt′

tmint′
min

Pr
[
α ∈ Ŝr

h(q), α′ ∈ Ŝr
h′(q′)

]
. Now, there are a unique j and ℓ such

that α ∈ Ŝr
h(q) only if α ∈ Sr

hj ,tj
(qj) and α′ ∈ Ŝr

h′(q′) only if α′ ∈ Sr
h′

ℓ
,t′

ℓ
(q′

ℓ). Thus

Pr
[
α ∈ Ŝr

h(q), α′ ∈ Ŝr
h′(q′)

]
equals

Pr
[
α ∈ reduce

(
Sr

hj ,tj
(qj), tmin

tj

)
, α′ ∈ reduce

(
Sr

h′
ℓ
,t′

ℓ
(q′

ℓ),
t′
min
t′
ℓ

)]
.

qj and q′
ℓ belong to the same layer so with similar arguments we find that

Pr
[
α ∈ Ŝr

h(q) and α′ ∈ Ŝr
h′(q′)

]
= tmint′

min
tjt′

l

Pr
[
α ∈ Sr

hj ,tj
(qj) and α′ ∈ Sr

h′
ℓ
,t′

ℓ
(q′

ℓ)
]

.

It is possible that (α, qj) = (α′, q′
ℓ) but then q ̸= q′ for otherwise we would have (α, q) =

(α′, q′), against assumption. In the case (α, qj) = (α′, q′
ℓ) we use Lemma 7 and find

Pr
[
α ∈ Sr

hj ,tj
(qj) and α′ ∈ Sr

h′
ℓ
,t′

ℓ
(q′

ℓ)
]

= Pr
[
α ∈ Sr

hj ,tj
(qj)

]
= tj = t′

ℓ. So

Pr
[
α ∈ Ŝr

h(q) and α′ ∈ Ŝr
h′(q′)

]
= tmint′

min
tj

and Pr
[
α ∈ Sr

h,t(q) and α′ ∈ Sr
h′,t′(q′)

]
= tt′

tj
. When (α, qj) = (α′, q′

ℓ), the paths path(α, q)
and path(α′, q′) diverge for the first time at qj = q′

ℓ. So tj = h(lcpn(path(α, q), path(α′, q′)))
and we are done. Now let us assume that (α, qj) ̸= (α′, q′

ℓ), then we use the induction
hypothesis and, denoting q∗ = lcpn(path(α, qj), path(α′, q′

ℓ)), we have

Pr
[
α ∈ Ŝr

h(q), α′ ∈ Ŝr
h′(q′)

]
≤ tmint′

min
h(q∗) and Pr

[
α ∈ Sr

h,t(q), α′ ∈ Sr
h′,t′(q′)

]
≤ tt′

h(q∗)

When (α, qj) ̸= (α′, q′
ℓ), the first node where path(α, q) and path(α′, q′) diverge is also the

first node where path(α, qj) and path(α′, q′
ℓ) diverge, so q∗. This finishes the proof of the

inductive case. ◀

	1 Introduction
	2 Background
	2.1 Related Work

	3 Technical Overview
	4 Algorithm
	5 Derivation paths
	6 The Framework for the Analysis
	6.1 History
	6.2 Random Process

	7 Analysis
	7.1 Proof of Lemma 10
	7.2 Proof of Lemma 11

	8 Conclusion
	A Appendix

